

Thermal Spray Process Training

Sauer Engineering www.SauerEngineering.com

John P. Sauer jopsauer@fuse.net 513-290-3617

Thermal Spray Process Course

- Course offerings would be a combination of days and topics below
 - Theory as shown below
 - Problem solving and auditing per part or system
 - Practical hands-on
 - Pick 3-5 coatings
 - For each coating, have
 - Two-three (2-3) bad parameter sets and one (I) ideal set
 - Presentation of theory would show photos from each parameter set and how we go from bad to good
 - Try and pick coatings which show principles of bad stand-off distance, cracking, too many unmelts, etc so theory and actual spraying flow together
 - Could even take it as far as having some simple configurations machined and ask to mask/spray difficult areas
 - Also spray different powder cuts that show how powders can make a difference
 - Also different powder morphologies
 - Testing of Coatings
 - Simple presentation of 1 day up to full week of IMR Metallographic and Evaluation training (Lansing NY)
 - o Full on site demonstration of Accuraspray plume sensor
 - Unit brought on site
 - During hands-on, will measure spray plume and provide data
- 1 week process course
 - o 2 day theory
 - o 1.5 day practical
 - .5-1.0 day problem solving/audit
 - .5-1.0 day testing
- Instructors
 - o John P. Sauer P.E. Sauer Engineering
 - 15 years of aerospace experience in both Thermal Spray and training
 - Traveled around the world for training courses addressing all the requirements for major OEM's like GE, Pratt, Rolls, and others
 - o Marcel VanWonderen KLM
 - 20 years of aerospace experience in Thermal Spray, Special Processes, and training
 - Traveled around the world for training courses addressing all the requirements for major OEM's like GE, Pratt, Rolls, and others
 - Leader in shop safety and environmental solutions
 - Varied hand-on instructors with over 25 years experience in spraying of aerospace parts in cleaning, grit blasting, masking, spray set-up, etc.

The following subjects will be dealt with during the course. Acceptable knowledge will result in a certification of the attendant.

There are 3 levels of knowledge necessity:

Background information (BI) - the applicable knowledge is informative
Basic knowledge (GK) - the knowledge is important on main lines
Extensive knowledge (EK) - the knowledge is essential for the process

1. <u>General</u> (EK)

- General explanation Thermal Spraying
- Which materials can be sprayed.
- In which form can materials be sprayed
- Why is thermal spraying being used.

2. Principle (EK)

- Explanation of the principle of thermal spraying:
 - energy
 - heating particles
 - deposition
 - build up of a layer

3. Spray processes (GK)

- Explanation of the different processes in conjunction with:
 - heat generation
 - heat transfer
 - acceleration of particles
 - process-scheme
- Explanation of different processes in conjunction with
 - equipment
 - guns
 - characteristics (temperatures, velocities, bond strengths, etc.)
 - consumables (gases, fuels, pressure air, anodes, nozzles, etc..)
 - economy
 - spray materials

4 Practical theory of thermal spraying

4.1 <u>Pre-treatments</u> (EK)

- Sequence of processes
- Cleanliness of surfaces
- other necessary processes before spraying (NDT, shot peening, etc..)

4.2 Pre-machining (EK)

- Geometric limits of a surface to be sprayed
- Why and when machining before spraying

4.3 Cleaning (EK)

- Why cleaning
- How cleaning
- What must be cleaned
- With which products one can be cleaning
- Safety and Quality

4.4 Masking (EK)

- Why masking
- How masking
- What must be masked
- With which products one can mask
- Quality of masking

4.5 Grit blasting (EK)

- Why gritblasting
- How to grit blast
- Grit blast consumables
- Quality of grit blasting

4.5 Coating thickness calculations (EK)

- Quantity of spray materials
- Final spray dimension
- Thickness calculation
- Use of test strips
- Example of calculations

4.7 <u>Pre-heating</u> (EK)

- Why pre-heating
- How pre-heating
- Which methods to pre-heat.

4.8 Spraying (EK)

- Choice of:
 - the spraying material
 - the spray process
- economical aspects
- coating properties
- availability of equipment

4.8.1 Spray materials (GK)

- Wires (solid and cord=wire)
 - Pure metals
 - Alloys
 - Ceramics
 - Pseudo-alloys
 - Applied materials and their properties

Powders

- Characteristics:
 - chemical composition
 - powder size
 - powder size distribution
 - particle shape
- Type:
 - Metals
 - Alloys
 - Non-Metals
 - Ceramics
 - Carbides
 - Mixtures
- Production
- Treatments
- Applied materials and their properties
- Bond mechanism
 - Explanation
 - Energy transfer (3 phases)

- Velocities
- Temperatures
- Dwell time
- Absorption time
- Feeding time
- Ideal process requirements
- Powder particle properties:
 - size
 - specific mass
 - heat conductivity
 - heat enthalpy
 - melting point
- Influence of spray parameters
 - spray distance
 - powder injection

4.8.2 Choice of the spray process (GK)

- Technical reasons (corrosion, wear, high temp)
 - Different kind of wears
 - abrasive
 - adhesive
 - fatigue
 - erosive
 - Choice of the material
 - Choice of the form of material
- Economical reasons
 - Costs of:
 - spray equipment (incl. spare parts)
 - consumables (e.g. gasses)
 - labor
 - environment and health/safety

4.8.3 <u>Technique of spraying</u> (EK)

- Adjustment of parameters
 - spray angles
 - spray distance
- Temperatures
 - cooling
 - cooling breaks
- Bond coats
- Circumferential speeds
- RPM's

- Gun speeds
- General tips on:
 - Spray powders
 - Powder feed equipment
 - calibration
 - Condition of nozzles and electrodes
 - Spraying of samples
 - Roughness of sprayed coating
 - Copper and copper alloys
 - Porous surfaces

4.9 After treatment (GK)

- How, what and why fusion?
- How, what and why impregnation?

4.10 <u>Inspection</u> (GK)

- How, what and why inspection?

4.11 Reinigen (GK)

- How, what and why cleaning after spraying?

4.12 Post machining (GK)

- How, what and why post machining
 - sound (vibrations)
 - cutting tools or grinding wheels,
 - smoke
- Turning
 - choice of cutting tools or bits
 - side relief angle
 - radius
 - cutting speed and depths
- Grinding
 - guidelines (cooling fluids, grinding pressure, dressing, balancing)
 - grain sizes
 - hard/soft stones
 - binding materials
- Superfinishing, lapping, polishing

5 Quality management (GK)

- Reproducability
- Quality care of thermal spray equipment,
- Quality care of parameters,
- Quality check:
 - Spray material control
 - test reports
 - procedures for new materials
 - Quality control of coatings
 - the brush test
 - the bend test
 - the dimple test
 - the tensile bond strength test
 - the macro-hardness test
 - the micro-hardness test
 - the scratch hardness test
 - microscopical investigation
 - appearance of the coating
 - practical testing

6 Health and safety (EK)

- Noise
- Dust, smoke and vapors
- UV-radiation.
- Breathing protection
- Skin protection
- Eye protection
- Ear protection
- Occupational laws
- Gasses
 - Hydrogen
 - Acetylene
 - Oxygen

6 Organization of a spray shop (BI)

- Gas supply
- Electricity
- Pressurized air
- Dust collection and exhaust system
- Grit blast equipment
- Cooling equipment
- Manipulation equipment
- Computer controlled equipment / robotizing
- Storage of spray materials and grit blast materials
- Post machining equipment